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A DISCUSSION OF THE APPLICATION OF TEE PRANDIL-GLAUERT
METHOD TO SUBSONIC COMPRESSIBLE FLOW OVER
A SLENDER BODY OF REVOLUTION

By Lester Lees

SUMMARY

The Prandtl-Glauert method for subsonic potential
flow of a compressible fluid has generally been believed
to 1lead to an increase in the pressures over a slender

body of revolution by a factor l/Vl - M12 (where Mq _
is Mach number in undisturbed flow) as compared with the -
pressures in incompressible flow. Recent German work on
thlis problem has indicated, however, that the factor

1/v1 - M12 is not applicable in this case., In the

present discussion & more careful application of thse
Prandtl-Glauert method to three-~dimensional flow gives
the following results:

The Prandtl-Glauert method does not lead to a
universal veloclty or pressure correction formula that is

independent of the shape of the body. The factor 1 Vl- M12
1s applicable only to the case of two-dimensional flow,

The increase with Mach number of the pressures over
& slender body of revolution 1s much less rapid than for
a two-dimensional airfoil. An approximate formula from
which the increase can be estimated is derived theoreti-
cally. -—

The increase with Mach number of the maximum axlsl
interference veloclty on a slender body of revolution in
a closed wind tunnel is gliven approximately by the factor

1/(1 - M12)3/2, rather than by the factor 1/(1 - uy2)°

previously obtained by Goldsteln and Young and by Tsien
and Lees, . - o
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T NTRODUCTION =

Because of its simpliclty and applicablllity to both _
two- and three-dimensional flow, the Prandtl-Glauert —
method has been ubtillzed to obtaln approximate solutions o
for a wlde variety of problems in subsonic compresasible
flow. The effects of wind-tunnel interference on thin -
airfoils and on slender bodies of revcoclution in subsonlc -
flow have been thoroughly discussed in references 1 snd 2. _
In common wlth many earlier writers on the subject, how- L
ever, including Prandtl and von Karmén (see references 3

6), the authors of references 1 and 2 state without i
clear proof that the Prandtl-Glauert method leads to an

increase by a factor of I/Vl - ﬁlz in the pressures
acting on the surface of a slender body of revolution in
an unbounded, uniform parallel flow. (The symbol W1
denotes Mach number in undisturbted flow.)

The present paver was prompteéd by recent German-work
on the problem of the subsonic flow over a body of revolu-
tion, which indicates tnat application of the factor

l/Vl >.M12 is entirely incorrect in this case (refer-

ences 7 and 8). Sowe German writers (references 9 and 10) .
have even stated that there is no ieffect of compressibllity

on the pressures over a slender bady of revolution in an
unbounded stream - at least in flrstapproximation. In

the present paver, the general problem.of the nearly

rarallel subsonic compressible flow over a c¢losed body

is treated as a straight-forward boundary-value problem.

Tt 1s pointed out that previous writersg (references 1L

to 6) were led to erroneous conclusions for the case of
three-dimensional flow either because they disregarded

the boundary conditions or because they 4dld not examine

the boundary conditions with sufficlent care. In order

to illustrate the general method of the present peaper, _
the problem of the subsonic flow over a slender body of -’
revolution is discussed and the particular case of the
e€llipsoid of revolution 1s studied in detall.

The question of the aponllication of the Prandtl-CGlauvert .
method to three-dimeénsional subsonic flow wag treated __ S e
correctly for the first time by Gothert. 1In reference T, «
Gothert shows that the pressure coefficients on the surface -
of & body in a nséarly parallel subsqnic flow are opbtained L
by calculating the incompressible [low over & body, the .

2
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lateral coordinates of which are contracted in the ratio

Vi-2%12 : 1 as compared with the lsteral coordinates of
the original body, and then multiplying the pressure coerl-
ficlents on the surface of this distcrted body by the:

factor ~—j;—§- The results obtained by Gothert's proce-
1~k -

dure and by the method of the present paper will be equiva-

lent in general. It is hoped that the reasons for the

essential difference between the two- and three-dlmensional

flow will be brought out more clearly by the present

treatment than by GoSthert's procedure.

The author is indebted to Dr. S. Katzoff for valuable
discussions of this problem and criticism of the present
paper.

ANALYSIS

Prandtl-Glauert lMethod for Subsonic Compressible Flow

The principal assumptlons of the Prandtl-Glauert
method for subsonic compressible flow are as follows:

(1) The influence of the viscosity and conductivity.
of the gas 1s neglected. -

(2) The pressure 1s a continuous function of the
density. ' o

(3) Changes in pressure and density 1n the flow are
small compared with the mean pressure and mean density:
that is, the deviations from a uniform parallel flow are
small.

The Prandtl-Glavert method thus deals with subsonic
flows that are shock free, or isentropic, and therefore
irrotational by Helmholtz' laws of vortex motion for a
gas. In a Cartesian coordinate (x, y, z) system, the
veloclty potential & 1is expressed by the relation

o(x, 7, z) =Ux + @(x, 3, 2) (1)

toied
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where ¢ .is the disturbance potential and Uy 1s the

velocity of the undisturbed flow. The corresponding
velocity components are ;

vy = Up +u, vy =V, vz = w C(2)
whsre _
o} o} - o

u =:__C?_’ v ="'c£‘: - W ="9' (3)
¢x oy oz
and
u v
— = l 0
Ul’ Ul Ul <<

With the assumption that the squares and products of the
disturbance velocities u, v, w are negligible compared
with the velocitles themselves, the exact equation of
continuity is approximated by the partial differentisl
equation for the disturbance potentisl

(1-142) é—i’~0 o
dze
where
53
My Mach number in undisturbed flow o
=1
and
a3 speed of sound in undisturbed flow

When the Msch number is vanishingly small, equation (L)
readuces to Laplacet!s equation for 4ncompressible potential
flow.

e
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A solution of equation (i)} must satisfy the following
boundary conditions:

(1) The disturbance velocities u, v, and w must
vanish 1n the undisturbed flow.

(2) At the surface of a soclid boundary, the component
of the gas velocity normal to the surface must vanish,
Since U3 + u = Uy, this condition is

Uj cos a + v cos B +wcos ¥ =20 (5)

where a, [, and ¥ .sre the angles that the normal to
the body surface meakes with the x-, y-, and z-sxes,
respectively.

In order to sclve this boundasry-value problem,
Prandtl and Glauert Iintroducts new Cartesian coordinates

g, ns { which are related %o the ¢oordinates x, y, and 2z
by the affine transformation : .

g =X
n=y y1-12 > (6)
t =z V1 —M]_Z

é o I;M"¢

In the new g ns & system, the disturbance potential'
satisfies Laplacets equation :

R B @
282 m® L | s

If the velocity potential is regarded as unchanged
in the transformation, the value of ® &at the point
(x, ¥, 2) in physical space is identical with the value
of @ at the point (&, M5 C) in the new space given
by equations (6). The relations between the Gisturbance
velocities in the &, n, € system (u', v', w') and
the physical disturbance velocities are as follows:

5
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u(x, y, z) = 99'3 Qﬂ gé :'u'(ép s §)

vz, y, 2) = 2 =2 &\ - M12 v, m, L) » ()

0y on 4y
wix, y, z) = 222088 _\i 2 wi(z, o, f)
oz of dz _ J

The lateral coordinates in the &, n, { system are con-
tracted, but the lateral veloclty components in the

g, n, { space are magnified ds compared with the lateral
velocity components at the cornesnonding point—in physical
space.

The boundary conditions that must be satisfied by
the soclutlion of ILavlace's equation (equation (7)) can now
be formunlated as follows:

(1) In the undisturbed stresm, u!, v', and w' must
vanish,

(2) At a point on the surface of the solld boundary
(xg, Vg5 %Zg), the lateral velocity components vg and wg

must satisfy equation (5). These velocitlies ure glven by

),

s:nss

Vs(Xs, Js» Zs)

1 (9)

|
[}
i
=
'_I
\S)
01@/
G

ws(Xss Yss Zs) =

Qa:ns:gs ]

il
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The potential (&, m, ) is set up as a general solution
of Laplace'!s equation that satisfies condition (1) and is
appropriate to the problem. The arbitrary constants in
the general solution ¢(&, n, {) are determined by
substituting equations (9) in equation (5). Thus, by use
of the Prandtl-Glauert method the problem of the nearly
parallel subsonic compressible flow over a closed body is
reduced to a problem in incompressible potential flow.

The procedure outlined in the present paper was
strictly carried out for the first time by Bilharz and
Holder in 1940 for the particular case of a body of
revolution of 10-percent thickness ratio, with its maximum
thickness at L0 percent chord (reference 11). Bilharz
and Holder, however, did not discuss the general implica-
tions of their results. Previous writers on the subject
attempted to draw conclusions directly from the differen-
tial equatlon (4) and overlooked the necessity of satis-
fying the boundary conditions.

Prandtl-Glauvert Method for Two-Dimensional Subsonic Flow

For two-dimensional subsonic flow, the Prandtl-
‘Glauert method leads directly Lo the result that the
pressures and the axial dlsturbance velocities on = thin
cylindrical body at a given small angle of attack are™

increased by a factor of l/Vl - Ml over the corre-
sponding values for Incompressible flow. The analysis

in this case 1s simple largely because the contraction

of the coordinates of the body surface, which is required
by equations (9), never enters the problem. For two- —
dimensional flow, the lateral velocity comnonent on the
surface of a thin cylindrical body vg(xg, yg) differs

from the velocity on the chord v(zg, 0) by a quantity

of higher order. This fact can be seen from physical
conslderations or from the devplopment of the velocity
v(Xg, ¥) 1in a Taylor's series

v(xg, ¥} = v(Xgz, O) +< > cen
XS, .

From the approximate continuity-equatlon-' e

' . 0
= (Mlz - l) 5-.7%

7
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and the fact that < ) + is of the order of yg, 1t
Xg,0

can be seen that vg(xg, ys) differs from v(xg, 0) by
a quantity of the order of vg2. ° - S

The boundary condltion that thie resultant velocity
on the surface must be tangential to the surface cdan then
be satisfied by the velocity on the chord v(xg, 0). This

condition is simply

v(xg, 0) = Uy tan B (xg) (10)

where

In equation (10) tan B (xg) 1s the slope of the surface
at the point (xg, yg) &and ¢ . is the chord of the body.
The boundary condition for a solution of Iaplace's equa—
tion in the &, n plane 1is :

Uy tan B (&g5)
vi(Ey, 0) = —ien S (11)

V-2

where

A

o
a
A

N e
|

2
2

The appropriate solution of Laplace's equation 1s
given by a continuous distribution of "singularities'
(vortices and/or sources and sinks) along the chord. The
strength of these singularitlies per unit length 1ls_directly
proportional to the factor Ui/Vl-—Mlz in the expression
for the required normal velocity v'(&g, 0) given by’
equation (11). In the limiting case of—=an incompressible
fluld, M3 saporoaches -0 and the strength of the singu-
larities is proportional to Uj. 1In the present case, in

3



NACA TN No. 1127

which M3 # O, the vortex or the source-sink strength
along the chord must therefore be greater than the
strength for Mj; = 0 by a factor of l/wl - ¥12. Since
the axial disturbance velocity wu'(&g, 0) 1s also pro-
portional to the strength of the singularities, this

velocity is also increased by the detOP 1 Vl ~M12. By
equation (8), therefore, :

El(xs: O)JM El (§5: O)]N ,
l — ) — 1 .---(12)
EI(XS, O)]O [U. (és, 0)}0 Vl - MlZ
regardless of the shape of the body or the _angle of _
attack. e
Integration of Bernoulli's equation givés
c
LS 7 1
e — - (13)

Cpg \/;L—_——Ml_a L _ _

where
P - Dy
C, = —2. =
b 12
2P1U1
and
o) local static pressure
=5 static pressure in undisturbed flow
Pt deﬁsity in undisturbed flow
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Prandtl-Glauert Method for Three-Dimensional

Subsonic Flow

For three-dimenslonal subscnic flow, the application
of the Prandti-Glauert method is not quite so simple as
for two~dimensional flow. The lateral veloclity components
on the surface of the body vg and wg do not differ
from the lateral velocities on the axis of the body by
quantities of higher order. 1In the case of a body of
revolution, for example, the radial velocity component - vn

near the axis 1s very nearly.equal to %ﬁi}, where

f(x) represents the strength of the scurce-sink distri-
bution along the axis and r 1s the distance from the
axis. In fact, it can be shown from the eguation 2f conti-
nutty (equation (L)) and the condition of irrotationality
that the radlel velocity component v, near the axis

is of the form

~

Vp = £x) + g(x)r log r +
r

Thus, the error made by neglecting the additional terms
in the expression for vy 1is in the ratio r2 log r

to Eiil, and this error is beyond the limits of a first
r

approximation.

The radial veloclty component thus increases indefi-
nitely as the axis 1la approached - In contrast to the
sltuation in the case of two-dimensional flow. Since the
lateral velocity components on the surface of the body of
revolutlon vg and wg obviously cannot be replaced by

the lateral veloclitles on the axig, the contruction of

the coordinates of the body in the ¢, n, { system enters
the problem; consequently the shape of the body becomes
important. This fact has apparently been overlooked in
the discussions of the problem given in references 1 to 6.

The boundary condition at a_point on the surfuce of
the body (=xg, Yg» Zs) 1is

10
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Vrg(Xa, ¥s, 2g) = VVSZ + wgl = U1 tan B (xg) (1h)

where

IIN
A

njo

Xg

N e

In equation (1h) tan B (xg)' 1s the slope of the surface

in a meridan plane and c¢ is the length of the body.
The boundary condition to be satisfied at the point
(&g, Ng» §s) by a solution of Laplace's equation is

U; tan B (&5)
V'rs(és’ Ngs {g) = = _ji____s . (15)

Vi - M12

where

<< &

Mo

s

nEo

The appropriate solution of Laplace's equation is given
by a continuous distribution of sources and sinks along

the axis between ¢ = -% end & = %’ of strength f(&)

per unit length. The strength £(&) 1is directly related
to the required lateral velocity v'rs by

Virg(Zss ey Lg) = £ L(&s) | |
g'=82 Nss S8 Lw Vﬁ;g ¥ 12 e
1 £(&g)

= (16)
lywr Vl - M1° V&SZ + z2g2

Thus, from sguation (15) the strength f(£) of the source-
sink distribution on tne axis 1s proportional to

Uy tan B(&g) for the given body, independently of the Mach
number of the undisturbed flow.

11
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(Since the equivalent source-sink distribution along
the axls of a slender body of revolution is independent
of Mach number in first approximation, an analysis simlilar
to that given in reference 2 shows that the Ilncresse wlth
Mach number of the maximum sxial interference veloclty on
& slender body of _revolution in a closed wind tunnel is

glven approximately by the factqr 1/(1 - M12)3 rather
than by the factor 1/(1 - ¥32)° previously obtained in

references 1 and 2. This result is in sgreement with ths
conclusions reached by von Baranoff in reference 12.)

The fact that £(&) 1is independent of Mach number
does not mean that the axial disturbancé velsclty
u(xg, Vs, 2s) = u'(€g, Mg, Ly) is also independent of

Mach number. The point (&g, mgs {g) 1liles closer to the

axls for a Mach number Mj # O than for incompresslble
flow. For the given source-sink distribution, the value
of u'{&g, mMgs bg) near the maximum thickness of the

body will thﬁrefore be larger then the corresponding vealue
for lncompressible flow. An estimate of this Iincrease

can be obtalned by an examinatian of the incompressible
field of flow around a thin ellipscid of revolution

(orolate spheroid). (See reference 13.)} The disturbance
veloclty potential is.
N A A+ 1
A = — -
oA, p) Au<2 log Y > (17}

where A and p are elliptic coordinates and A 1is a
constant. (The symbol A 1is used instead of Lambts
in order to avoid confusion.) In the viclnity of the
maximum thickneass of the bhody, - : E

A

A:—Db/l +-3-—---~.~F—-—§-Ei
(e/2)2

> (18)

p—2>0

o

In equation (18) ¢ is the length of ellipsoid of revolu-

tion. The maximum axial disturbénce veloclty u! mex{(S, M, L)

1s epproximated by P S

.I:Ii
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u'mg_x(é: s {) =

V2 + ¢2
c/2

Therefore - —_—

t
Urax(Xsg, Ys» 2s) = 1 - log 2 + log (Vl - M]_2 E—) (20)

where t/¢ is the thickness ratio of the body. It
follows that

(umalx)Ml _ Cle log Vl - Mlz

= =1 + T
(umax)o Cpo 0.31 + log 7

u

1 - log 2 + log (19)

(21)

Schimieden and Kawalki in reference 8 obtained the same
result by a careful applicatlion of the procedure outlined
by Gothert (reference 7). The original expression given
by Gothert is incorrect.

From equation (21) the effect of compressibility canlw
be seen to vanlsh as the thickness ratio approaches zero - |
in contrast to the casse of two-dimensional flow - where
the first-order effect of compressibility is given by

1/%1 - M12, independently of the shape of the body or the /
angle of attack of the body. '

For slender bodies of revolutlon that sre symmetrical
or nearly symmetrical longitudinally, equation (21) should
give some indlcation of the first-order effect of .campressi-
bllity. This equation 1s plotted in figure 1 for various
values of the thickness ratio t/c. The effect of com-
pressibility is evidently considerably smuller than the

factor 1/Qﬁ - M12 .would predict. For an ellipsoid of

revolution of 10-percent thickness ratlio the estimated
increase in maximum negative pressure coefficient is only
25 percent at a Mach number of 0.80. The increase in

13
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maximum préssure coefficient obtained in reference 1l by
an approximate numerical procedure for a body of revolu-
tion of the same thlckness ratio with i1ts meximum thick-
ness at 1O percent chord is 13, perbent By oomparison,

the factor I/V1 - N12 predlcts an increase of 67 percent
in the axlal disturbance velocity and pressure coefiicient.

In passing, it should be noted that the ineapplica-

bility of the factor I/Vl-ldla for three-dimensional
subsonlc flow is indicated by the results of the calcula-
tion of the subsonic flow over a sphere by the Janzen-
Rayleigh method of iteration (reference 1l.). The first-
order effect of compressibility on the pressures must be
less for a slender body of revolution than for a thick
body, such as the sphere. Since the maximum pressure
coefficlent on the sphere &t the critical Mach number

My = 0.575 418 less than the factor l/vl - M12 would

predlct (fig. 1), this factor cannot p0331b1y give the
correct result for a slender body of revolutlon.

r~

Because the axial dlsturbance veloclity near the
maximum thickness of a slender body of revolutlon is
small (=0.0%20U; in the example of reference 11) and the

increase of this velocity with Mach number is also small,
the assumptions of the Prandtl-Glauert method are more
nearly satlsfied at considerably higher subsonlc Xach
numbers in three-dimensional flow thsn in two-dimensional
flow. For the same reasons, the so-called critical Mach
nunber for a slender body of revolution is quite close

to unity. This conclusion is generally avplicable to any
three-dimensional body, the lateral dimensions of which
are amall compared with the dlmensions in the direction
of motion, for example, the highly swept-back thin wing.

CONCLUDING REMARKS

An analysis of the Prandtl-Glauert method for. sub-
sonic compressible flow around a slender body of revolu-~
tion led to the followling conclusions:

1. The method does not glve a universal velocity or
pressure correction formula that 1s independent of the .

shape of the body. The factpr LY - Mla .(where M;

1l
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is Mach number in undisturbed flow) is applicable only
to problems of two-dinmensional flow.

2. The increass with Mach number of the pressure
coeofficients and asxial velocities on the surface of a
slender body oI revolution is much less rapid than for =
two-dimensional alrfoil. An approximate estimate of this
lncrease for slender bodies of revolution that are sym-
metrical or nearly symmetrical longitudinally can be . m——
obtained from the expression. ’ : :

EET?fol _, s V1 -2

(umaX)o 0.31 + log %

where Upsyx 135 maximum axial disturbance veloclty and

t/c is the thickness ratio of the body. (This expression _
is derived from a consideration of a thin ellipsoid of o e
revolution.) '

%. The 'so-called critical Mach number for a slender
body of revolution 1s guite close to unity. This con-
clusion 1s generslly applicable to any three-dimensionsal
body, the lateral dimensions of which are small compared
with the dimension in the direction of motion, for example,
the highly swept-back wing. o

L. The equivalent source-sink distribution slong the
axis of a slender body of revolution is independent of
Mach number in first approximation. Therefore, the - °° T :
increase with Mach number of the maximum axlal inter- T
ference velocity on a slender body of revolution in a -
closed wind tunnel is glven approximately by the factor R

l/tl-M 2)3 rather than by the factor %/@-- MZ)Z

previously obtained by Goldsteln and Young and by Tsien
and Lees,

Langley Merorial Aeronautical Laborstory el
National Advisory Ccommitise for heronautics
Lengley Fleld, Va., February 13, 1946
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